ru uk en
Украина, Киев, ул. Семьи Сосниных 7



Главная » Древотрейд » Пиролиз




22:01
Пиролиз

Пиролиз (от др.-греч. πῦρ «огонь, жар» + λύσις «разложение, распад») — термическое разложение органических и многих неорганических соединений. В узком смысле — разложение органических природных соединений при недостатке кислорода (древесинынефтепродуктов и прочего). В более широком смысле — разложение любых соединений на составляющие менее тяжёлые молекулы или химические элементы под действием повышенной температуры. Так, например, теллуроводород разлагается на водород и теллур уже при температуре около 0 °С.

Процесс термического пиролиза углеводородного сырья (нефти и её фракций) — основной способ получения низкомолекулярных ненасыщенных углеводородов — олефинов(алкенов) — этилена и пропилена.

Существующие мощности установок для проведения пиролиза в мире составляют 113,0 млн т/год по этилену или почти 100 % мирового производства и 38,6 млн т/год по пропилену или более 67 % мирового производства (остальное — 30 % производства пропилена приходится на каталитический крекинг, около 3 % мирового производства пропилена получают из побочных газов нефтеперегонных заводов, а именно из газов процессов замедленного коксования и висбрекинга). При этом, среднегодовой прирост потребления этилена и пропилена в мире составляет более 4 %[когда?][источник не указан 794 дня].

Наряду с производством этилена и пропилена, процесс пиролиза нефти — основной источник производства дивинила, выделяемого ректификацией из сопутствующей пиролизной С4 фракции и отгонов бензола, получаемого из жидких продуктов пиролиза.

Около 80 % мирового производства бутадиена и 39 % производства бензола осуществляется пиролизом углеводородов.

В промышленных условиях пиролиз углеводородов осуществляют при температурах 800—900 °C и при давлениях, близких к атмосферному (на входе в нагреваемый трубопровод — пирозмеевик ~0,3 МПа, на выходе из него — 0,1 МПа избыточного давления).

Время прохождения сырья через пирозмеевик составляет 0,1—0,5 сек.

Теория пиролиза недостаточно изучена. Большинство исследователей придерживаются теории цепного свободно-радикального механизма разложения при пиролизе в таких условиях.

Условно, все реакции при пиролизе можно разделить на первичные и вторичные. Первичные реакции протекают со снижением молекулярной массы продуктов пиролиза. Это, в основном, реакции расщепления высокомолекулярных парафинов и нафтеновых углеводородов с образованием углеводородов с меньшей молекулярной массой, что сопровождается увеличением объёма газообразной смеси.

Далее возможны вторичные реакции синтеза более тяжёлых молекул из низкомолекулярных непредельных углеводородов. Эти реакции протекают, преимущественно, на поздних стадиях пиролиза.

При увеличении молекулярной массы молекул в смеси продуктов реакции уменьшается объём газов реакционной массы.

В основном, реакции образования ароматических, конденсированных ароматических углеводородов типа нафталинаантрацена в результате реакции конденсации/поликонденсации ведут к синтезу термически стабильных ароматических углеводородов в том числе, по реакциям типа Дильса — Альдера.

Также, ко вторичным реакциям можно отнести реакции образования смеси различных пастообразных углеводородов, с низким удельным содержанием водорода в молекулах соединений, называемых в промышленности пёком.

Пёк при обжиге при температурах свыше 1000 °С теряет водород в составе молекул легкокипящих углеводородов. Получаемый продукт, как правило, называют пиролитическим коксом. Но пиролитический кокс отличается по многим физическим свойствам, в частности, по абсорбционной способности, от каменоугольного кокса.

Деление реакций на первичные (разрушение тяжёлых молекул) и вторичные (синтез поликонденсированных ароматичеких углеводородов) условно, так как оба типа реакций происходят одновременно.

Для снижения скоростей вторичных реакций пиролиза — синтеза используют разбавление сырья пиролиза водяным паром. В результате парциальное давление пара углеводородов снижается и, согласно принципу Ле Шателье, снижение давления в зоне реакции будет способствовать протеканию реакций, идущих со снижением молекулярной массы, то есть с увеличением объёма, таким образом обеспечивается увеличение выхода продуктов расщепления — продуктов первичных реакций.

Концентрация водяного пара в процессе пиролиза выбирается в зависимости от целевого продукта. Так, для получения этилена, бутилена, бензина соотношение пара к сырью обычно составляет 0,3:1,0, 0,4:1,0, 0,5:1,0 соответственно.

В промышленности распространение получили трубчатые пиролизные реакторы. Они состоят из двух частей, отличающихся характером теплообмена — радиационной и конвекционной. Именно в радиационной секции находятся трубчатые реакторы пиролиза (пирозмеевики), обогреваемые теплом сгорания внешне подаваемого горючего газа в горелках этой секции.

В радиационной секции пирозмеевики обогреваются не непосредственно пламенем горелок, а тепловым излучением (радиацией) от факела пламени (см. Формула Планка). и от теплового излучения внутренней огнеупорной кладки радиационной секции установки, непосредственно нагреваемой пламенем горелок.

В конвекционной части установки теплообмен между греющим газом — продуктами горения происходит за счет конвективного теплообмена. В этой части установки пиролиза происходит предварительный нагрев сырья, водяного пара, и нагрев до температуры начала пиролиза (600—650 °C). Газы в конвективную часть поступают из радиационной секции.

Для точной регулировки температуры в обеих секциях на выходе из установки установлен дымосос с регулирующим шибером для управления расходом дымовых газов.

Для энергетической эффективности пиролизные установки дополнительно оборудуют теплоутилизационными системами — котлами-утилизаторами. Кроме нагрева сырья и разбавляющего его водяного пара, в конвекционной части происходит нагрев питательной воды котла-утилизатора, и далее эта вода используется для охлаждения продуктов пиролиза, сама при этом подогревась. Полученная в результате частичного испарения воды пароводяная смесь, подается в барабан котла-утилизатора. В барабане происходит сепарация пара от жидкости. Насыщенный пар из барабана далее дополнительно перегревается в пароперегревателе этой же установки, в результате получается перегретый парсреднего давления, затем используемый в качестве рабочего тела паровой турбины, являющейся приводом компрессора-нагнетателя для сырья пиролиза — пирогаза.

В современных пиролизных установках в конвекционной части её располагают поверхности нагрева перегрева насыщенного пара до технологически приемлемой температуры (550 °C, при снижении температуры перегретого пара падает тепловой КПД, при высоких температурах снижается надёжность и безопасность установки из-за снижения прочности конструкционных сталей при высоких рабочих температурах). Эти меры позволили повысить КПД использования тепла в современных моделях печей пиролиза до 91—93 %.

Для повышения селективности процесса и выходов продуктов (обеспечения максимального выхода желаемых продуктов реакции и подавления образования нежелательных продуктов реакции) при пиролизе время пребывания сырья в реакционной зоне — зоне высокой температуры необходимо сокращать, а температуру процесса — повышать. Такой подход обеспечивает повышение выхода целевых продуктов пиролиза с одновременным снижением образования побочных продуктов реакции.

Поэтому конструкторы установок стремились сокращать длительность фазы пиролиза. В современных установках время перегрева сырья и последующего охлаждения продуктов составляет ~0,2 с, а температура нагрева для реакций пиролиза достигает 870—900 °C.

Проблема быстрого нагрева-охлаждения реакционной смеси за время 0,2 с от ~600 °C до ~1000 °C представляет собой сложную техническую задачу. Задача осложняется тем, что необходимо учитывать предельно допустимую рабочую температуру современных хромоникелевых сплавов, — основных конструкционных сталей таких установок, из которых изготавливаются реакционные змеевики. Также, при высоких температурах резко повышается коксообразование на внутренних поверхностях труб из этих сплавов.

Быстрый нагрев-охлаждение смеси можно обеспечить либо повышением перепада температур между греющей поверхностью и смесью, либо развивая поверхность теплообмена, либо оптимизируя геометрию и расположение теплообменных поверхностей. В современных установках применяется сочетание всех подходов. Без увеличения температурного перепада между стенкой пирозмеевика и паросырьевым потоком быстрый нагрев можно обеспечить увеличив удельную поверхность пирозмеевика, то есть поверхности на единицу расхода паросырьевого потока. Большинство фирм-разработчиков печей пиролиза пошли по пути конструктивного выполнения пирозмеевиков ветвящимися, с переменным диаметром входящих в змеевиковый пакет труб.

В установках предыдущих поколений пирозмеевики представляли собой длинную трубу постоянного диаметра, согнутую на равные части (в змеевик) для уменьшения размеров печи, то теперь пирозмеевики изготавливаются из большого количества труб (10—20) малого диаметра, которые объединяются в общие трубы на входе смеси и на выходе, и, в итоге, на выходе змеевик оканчивается 1—2 трубой значительно большого диаметра. В таких пирозмеевиках достигается высокая теплонапряженность (перепад температур) на начальном участке и низкая — на конце, где высокая температура стенки трубы нежелательно вызывает высокое коксообразование.

В установках ранних поколений пирозмеевики в радиационной секции ориентировались горизонтально, время реакционного контакта в таких печах составляло не меньше 1,0 сек, оптимальная температура пиролиза — не выше 800 °C. В последующих поколениях ориентацию реакционных труб выполняют вертикальной — свободно висящие трубы радиационной секции пирозмеевиков позволило применить более жаропрочные, но более хрупкие материалы для изготовления пирозмеевиков, так как при таком расположении материал труб не испытывает изгибных механических напряжений, а только растягивающие. Это позволило создать высокотемпературные установки и с кратким временем пребывания потока сырья в пирозмеевиках.

Для быстрого охлаждения прореагировавшей смеси с целью сохранить термодинамически неравновесное состояние смеси и предотвращения протекания нежелательных вторичных реакций, на выходе из пирозмеевиков устанавливают так называемые закалочно-испарительные аппараты. В их трубном пространстве происходит быстрое охлаждение (закалка) продуктов реакции до температур 450—550 °C, при которых скорость реакций поликонденсации углеводородов очень мала. В межтрубном пространстве происходит испарение котловой воды котла-утилизатора, которая, как упоминалась выше, используется для получения пара высокого давления.

Категория: Древотрейд | Просмотров: 1485 | Добавил: admin_drevo | Теги: пиролиз | Рейтинг: 5.0/1
Всего комментариев: 0
avatar